Tsirelson’s problem and linear system games

William Slofstra

IQC, University of Waterloo

October 21st, 2016

includes joint work with Richard Cleve and Li Liu
A speculative question

Conventional wisdom: Finite time / volume / energy / etc. \(\implies\) can always describe nature by finite-dimensional Hilbert spaces

But... many models in quantum mechanics and quantum field theory require infinite-dimensional Hilbert spaces (e.g. CCR)

Could nature be “intrinsically” infinite-dimensional?

Answer: Probably not

But if it was... could we recognize that fact in an experiment?

(For instance, in a Bell-type experiment?)
Non-local games (aka Bell-type experiments)

Win/lose based on outputs a, b and inputs x, y

Alice and Bob must cooperate to win

Winning conditions known in advance

Complication: players cannot communicate while the game is in progress
Suppose game is played many times, with inputs drawn from some public distribution π

To outside observer, Alice and Bob’s strategy is described by:

$$P(a, b|x, y) = \text{the probability of output } (a, b) \text{ on input } (x, y)$$

Correlation matrix: collection of numbers $\{P(a, b|x, y)\}$
Non-local games ct’d

\[P(a, b|x, y) = \text{the probability of output } (a, b) \text{ on input } (x, y) \]

With \(n \) possible questions and \(m \) possible answers, correlation matrix \(\{P(a, b|x, y)\} \) is list of \(m^2 n^2 \) probabilities

Value of game: \(\omega_C = \text{optimal winning probability using correlations } \{P(a, b|x, y)\} \text{ from fixed set of correlations } C \)

Idea: if \(\omega_{C_1} < \omega_{C_2} \) then

- there is a correlation \(\{P(a, b|x, y)\} \) in \(C_2 \) but not in \(C_1 \), and
- there is a (theoretical) Bell-type experiment to show this.
Non-local games ct’d

Value of game $\omega_C = \text{optimal winning probability using strategies}\ \{P(a, b|x, y)\} \text{ from } C$

Idea: if $\omega_{C_1} < \omega_{C_2}$ for some game then

• there is a correlation $\{P(a, b|x, y)\}$ in C_2 but not in C_1, and
• there is a (theoretical) Bell-type experiment to show this.

Bell’s theorem:

• $C_c = \text{classical correlation matrices of the form}$

$$P(a, b|x, y) = \sum \lambda_i A_i(a|x) B_i(b|y).$$

• $C_q = \text{quantum correlations}$

Then there are games with $\omega_c < \omega_q$.

Tsirelson’s problem and linear system games William Slofstra
Quantum strategies

How do we describe a quantum strategy?

Use axioms of quantum mechanics:

- Physical system described by Hilbert space
- No communication \Rightarrow Alice and Bob each have their own (finite dimensional) Hilbert spaces \mathcal{H}_A and \mathcal{H}_B
- Hilbert space for composite system is $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$
- Shared quantum state is a unit vector $|\psi\rangle \in \mathcal{H}$
- Alice’s output on input x is modelled by measurement operators $\{M^x_a\}_a$ on \mathcal{H}_A
- Similarly Bob has measurement operators $\{N^y_b\}_b$ on \mathcal{H}_B

Quantum correlation: $P(a, b|x, y) = \langle \psi | M^x_a \otimes N^y_b | \psi \rangle$
Quantum correlations

Compare: finite and infinite dimensional correlations

\[C_q = \left\{ \{P(a, b|x, y)\} : P(a, b|x, y) = \langle \psi | M^x_a \otimes N^y_b | \psi \rangle \right\} \]

where

\[|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B, \text{ where } \mathcal{H}_A, \mathcal{H}_B \text{ fin dim'1} \]

\[M^x_a \text{ and } N^y_b \text{ are projections on } \mathcal{H}_A \text{ and } \mathcal{H}_B \]

\[\sum_a M^x_a = I \text{ and } \sum_b N^y_b = I \text{ for all } x, y \]

and

\[C_{qs} = \text{same but } \mathcal{H}_A \text{ and } \mathcal{H}_B \text{ are possibly infinite-dimensional} \]

Question: is \(\omega_q < \omega_{qs} \) for some game?

Answer: No!
Quantum correlations ct’d

C_q : finite-dimensional correlations

C_{qs}: possibly-infinite-dimensional correlations

Question: is $\omega_q < \omega_{qs}$ for some game?

Answer: No!

Let $C_{qa} = \overline{C_q}$, so $\omega_q = \omega_{qa}$ for any game.

Then $C_q \subseteq C_{qs} \subseteq C_{qa}$, so $\omega_{qs} = \omega_{qa} = \omega_q$ for any game.

Fortunately, this is not the end of the story

We’ve assumed that $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$... maybe this is too restrictive
Commuting-operator model

Another model for composite systems: \(\textit{commuting-operator model} \)

In this model:

- Alice and Bob each have an algebra of observables \(\mathcal{A} \) and \(\mathcal{B} \)
- \(\mathcal{A} \) and \(\mathcal{B} \) act on the joint Hilbert space \(\mathcal{H} \)
- \(\mathcal{A} \) and \(\mathcal{B} \) commute: if \(a \in \mathcal{A} \), \(b \in \mathcal{B} \), then \(ab = ba \).

This model is used (for instance) in quantum field theory.

Correlation set:

\[
C_{qc} := \left\{ \{P(a, b|x, y)\} : P(a, b|x, y) = \langle \psi | M_a^x N_b^y | \psi \rangle, \quad M_a^x N_b^y = N_b^y M_a^x \right\}
\]

Hierarchy: \(C_q \subseteq C_{qs} \subseteq C_{qa} \subseteq C_{qc} \)
Tsirelson’s problem

Two models of QM: tensor product and commuting-operator

Tsirelson problems: is C_t, $t \in \{q, qs, qa\}$ equal to C_{qc}

Fundamental questions:

1. What is the power of these models?

 Strong Tsirelson: is $C_q = C_{qc}$?

2. Is $\omega_{qa} < \omega_{qc}$ for any game?

 Since C_{qa} and C_{qc} are closed convex sets, equivalent to

 Weak Tsirelson: is $C_{qa} = C_{qc}$?
What do we know?

\[C_q \subseteq C_{qs} \subseteq C_{qa} \subseteq C_{qc} \]

Strong

weak

Theorem (Ozawa, JNPPSW, Fr)

\[C_{qa} = C_{qc} \text{ if and only if Connes' embedding problem is true} \]

Theorem (S)

\[C_{qs} \neq C_{qc} \]
Other fundamental questions

1. Given a non-local game, can we compute the optimal value ω_t over strategies in C_t, $t \in \{qa, qc\}$?

2. Is $C_q = C_{qa}$? In other words:
 - Is C_q closed?
 - Does every non-local game have an optimal finite-dimensional strategy?

3. Given $P \in C_q$, is there a computable upper bound on the dimension needed to realize P?
What do we know?

Question: Given a non-local game, can we compute the optimal value ω_t over strategies in C_t, $t \in \{qa, qc\}$?

Brute force: search through strategies on $\mathcal{H}_A = \mathcal{H}_B = \mathbb{C}^n$, converges to ω_{qa} (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to ω_{qc} (from above)

Problem: in both cases, no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if $\omega_{qc} < 1$

General cases of other questions completely open!
Undecidability of quantum logic

Theorem (S)

It is undecidable to tell if $\omega_{qc} < 1

We’re now talking about something practical (but mathematics, not physics)

More generally: Can we tell if a statement like

Conditions on collection of projections \implies some other condition on the collection

holds in all Hilbert spaces.

T. Fritz: Proof of above theorem implies quantum logic is undecidable
Two theorems

Theorem (S)

\[C_{qs} \neq C_{qc} \]

Theorem (S)

It is undecidable to tell if \(\omega_{qc} < 1 \)

Theorems look very different...

But: proof follows from a single theorem in group theory

Connection with group theory comes from linear system games
Linear system games

Start with $m \times n$ linear system $Ax = b$ over \mathbb{Z}_2

Inputs:
- Alice receives $1 \leq i \leq m$ (an equation)
- Bob receives $1 \leq j \leq n$ (a variable)

Outputs:
- Alice outputs an assignment a_k for all variables x_k with $A_{ik} \neq 0$
- Bob outputs an assignment b_j for x_j

They win if:
- $A_{ij} = 0$ (assignment irrelevant) or
- $A_{ij} \neq 0$ and $a_j = b_j$ (assignment consistent)
Quantum solutions of $Ax = b$

Observables X_j such that

1. $X_j^2 = I$ for all j
2. $\prod_{j=1}^{n} X_j^{A_{ij}} = (-I)^{b_i}$ for all i
3. If $A_{ij}, A_{ik} \neq 0$, then $X_jX_k = X_kX_j$

(We’ve written linear equations multiplicatively)

Theorem (Cleve-Mittal, Cleve-Liu-S)

Let G be the game for linear system $Ax = b$. Then:

- G has a perfect strategy in C_{qs} if and only if $Ax = b$ has a finite-dimensional quantum solution
- G has a perfect strategy in C_{qc} if and only if $Ax = b$ has a quantum solution
Group theory

Finitely presented group: algebraic structure generated by products of symbols

\[X_1, \ldots, X_n \]

and their inverses, satisfying some relations

\[R_i(X_1, \ldots, X_n), 1 \leq i \leq k \]

Important: the empty product \(e \) acts like 1, but no scalars (i.e. no \(-1\)), no addition

Example:

\[\langle a, b : a^2 = b^2 = e = (ab)^3 \rangle \]

Question: which relations determine interesting groups?
Group theory ct’d

Is there a group generated by X_1, \ldots, X_n satisfying the quantum linear relations from before?

1. $X_j^2 = I$ for all j
2. $\prod_{j=1}^{n} X_j^{A_{ij}} = (-I)^{b_i}$ for all i
3. If $A_{ij}, A_{ik} \neq 0$, then $X_j X_k = X_k X_j$

Almost: replace $-I$ with new symbol J

The solution group Γ of $Ax = b$ is the group generated by X_1, \ldots, X_n, J such that

1. $X_j^2 = [X_j, J] = J^2 = e$ for all j
2. $\prod_{j=1}^{n} X_j^{A_{ij}} = J^{b_i}$ for all i
3. If $A_{ij}, A_{ik} \neq 0$, then $[X_j, X_k] = e$

where $[a, b] = aba^{-1}b^{-1}$, $e =$ group identity
Group theory ct’d

The solution group Γ of $Ax = b$ is the group generated by X_1, \ldots, X_n, J such that

1. $X_j^2 = [X_j, J] = J^2 = e$ for all j
2. $\prod_{j=1}^{n} X_j^{A_{ij}} = J^{b_i}$ for all i
3. If $A_{ij}, A_{ik} \neq 0$, then $[X_j, X_k] = e$

where $[a, b] = aba^{-1}b^{-1}$, $e = \text{group identity}$

Theorem (Cleve-Mittal,Cleve-Liu-S)

Let G be the game for linear system $Ax = b$. Then:

- G has a perfect strategy in C_{qs} if and only if Γ has a finite-dimensional representation with $J \neq I$
- G has a perfect strategy in C_{qc} if and only if $J \neq e$ in Γ
Groups and local compatibility

Suppose we can write down any group relations we want...

But: generators in the relation will be forced to commute!

Call this condition *local compatibility*

Local compatibility is (a priori) a very strong constraint

For instance, S_3 is generated by a, b subject to the relations

$$a^2 = b^2 = e, (ab)^3 = e$$

If $ab = ba$, then $(ab)^3 = a^3 b^3 = ab$

So relations imply $a = b$, and S_3 becomes \mathbb{Z}_2
Group embedding theorem

Solution groups satisfy local compatibility

Nonetheless:

Solution groups are as complicated as general groups

Theorem (S)

Let G be any finitely-presented group, and suppose we are given J_0 in the center of G such that $J_0^2 = e$.

Then there is an injective homomorphism $\phi : G \rightarrow \Gamma$, where Γ is the solution group of a linear system $Ax = b$, with $\phi(J_0) = J$.
How do we prove the embedding theorem?

Linear system $Ax = b$ over \mathbb{Z}_2 equivalent to labelled hypergraph:

Edges are variables

Vertices are equations

v is adjacent to e if and only if $A_{ve} \neq 0$

v is labelled by $b_i \in \mathbb{Z}_2$

Given finitely-presented group G, we get Γ from a linear system

But what linear system?

Can answer this pictorially by writing down a hypergraph?
The hypergraph by example

\[\langle x, y, z, u, v : xyxz = xuvu = e = x^2 = y^2 = \cdots = v^2 \rangle \]
\[
\langle x, y, z, u, v : xyxz = xuvu = e = x^2 = y^2 = \cdots = v^2 \rangle
\]

Thank-you!