Tsirelson's problem and linear system games

William Slofstra

IQC, University of Waterloo

October 18th, 2016 (with some corrections)

includes joint work with Richard Cleve and Li Liu

Non-local games

Win/lose based on outputs a, band inputs x, y

Alice and Bob must cooperate to win

Winning conditions known in advance

Complication: players cannot communicate while the game is in progress Strategies for non-local games

Suppose game is played many times, with inputs drawn from some public distribution π

To outside observer, Alice and Bob's strategy is described by:

P(a, b|x, y) = the probability of output (a, b) on input (x, y)

Correlation matrix: collection of numbers $\{P(a, b|x, y)\}$

Classical and quantum strategies

P(a, b|x, y) = the probability of output (a, b) on input (x, y)Value of game $\omega =$ winning probability using strategy $\{P(a, b|x, y)\}$

What type of strategies might Alice and Bob use?

Classical: can use randomness, flip coin to determine output.

Correlation matrix will be P(a, b|x, y) = A(a|x)B(b|y).

Quantum: Alice and Bob can share entangled quantum state

Bell's theorem: Alice and Bob can do better with an entangled quantum state than they can do classically

Quantum strategies

How do we describe a quantum strategy?

Use axioms of quantum mechanics:

- Physical system described by (finite-dimensional) Hilbert space
- No communication \Rightarrow Alice and Bob each have their own (finite dimensional) Hilbert spaces \mathcal{H}_A and \mathcal{H}_B
- Hilbert space for composite system is $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$
- Shared quantum state is a unit vector $|\psi
 angle\in\mathcal{H}$
- Alice's output on input x is modelled by measurement operators {M^x_a}_a on H_A
- Similarly Bob has measurement operators $\{N_b^y\}_b$ on \mathcal{H}_B

Quantum correlation: $P(a, b|x, y) = \langle \psi | M_a^x \otimes N_b^y | \psi \rangle$

Quantum correlations

Set of quantum correlations:

$$C_{q} = \left\{ \{ P(a, b|x, y) \} : P(a, b|x, y) = \langle \psi | M_{a}^{x} \otimes N_{b}^{y} | \psi \rangle \text{ where} \\ |\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \text{ where } \mathcal{H}_{A}, \mathcal{H}_{B} \text{ fin dim'l} \\ M_{a}^{x} \text{ and } N_{b}^{y} \text{ are projections on } \mathcal{H}_{A} \text{ and } \mathcal{H}_{B} \\ \sum_{a} M_{a}^{x} = I \text{ and } \sum_{b} N_{b}^{y} = I \text{ for all } x, y \right\}$$

Two variants:

C_{qs}: Allow H_A and H_B to be infinite-dimensional
 C_{qa} = C
_q: limits of finite-dimensional strategies
 Relations: C_q ⊆ C_{qs} ⊆ C_{qa}

Commuting-operator model

Another model for composite systems: *commuting-operator model* In this model:

- Alice and Bob each have an algebra of observables ${\mathcal A}$ and ${\mathcal B}$
- ${\mathcal A}$ and ${\mathcal B}$ act on the joint Hilbert space ${\mathcal H}$
- \mathcal{A} and \mathcal{B} commute: if $a \in \mathcal{A}$, $b \in \mathcal{B}$, then ab = ba.

This model is used in quantum field theory

Correlation set:

$$C_{qc} := \left\{ \{ P(a, b|x, y) \} : P(a, b|x, y) = \langle \psi | M_a^x N_b^y | \psi \rangle, \\ M_a^x N_b^y = N_b^y M_a^x \right\}$$

Hierarchy: $C_q \subseteq C_{qs} \subseteq C_{qa} \subseteq C_{qc}$

Tsirelson's problem

Two models of QM: tensor product and commuting-operator

Tsirelson problems: is C_t , $t \in \{q, qs, qa\}$ equal to C_{qc}

Fundamental questions:

• What is the power of these models?

Strong Tsirelson: is $C_q = C_{qc}$?

Are there observable differences between these two models, accounting for noise and experimental error?

Weak Tsirelson: is $C_{qa} = C_{qc}$?

What do we know?

Theorem (Ozawa, JNPPSW, Fr)

 $C_{qa} = C_{qc}$ if and only if Connes' embedding problem is true

Theorem (S)
$$C_{qs} \neq C_{qc}$$

Other formulations (NCPV)

Formulation due to Navascués, Cooney, Pérez-García, Villanueva Given $\{P(a, b|x, y)\}$

Local measurement statistics:
$$P(a|x) = \sum_{b,y} P(a, b|x, y)$$
,
 $P(b|y) = similar$

Rather than modeling joint system, model Bob's system:

• For local measurement statistics, find measurements $\{N_b^y\}$ and density matrix ρ such that

$$P(b|y) = \operatorname{tr}\left(N_b^y\rho\right)$$

② For joint statistics, find measurements $\{N_b^y\}$ and density matrices ρ^{xa} such that

$$P(a,b|x,y) = P(a|x) \operatorname{tr} \left(N_b^y \rho^{xa} \right).$$

Other formulations (NCPV continued)

• For local measurement statistics, find measurements $\{N_b^y\}$ and density matrix ρ such that

$$P(b|y) = \operatorname{tr}\left(N_b^y \rho\right)$$

② For joint statistics, find measurements $\{N_b^y\}$ and density matrices ρ^{xa} such that

$$P(a,b|x,y) = P(a|x) \operatorname{tr} \left(N_b^y \rho^{xa} \right).$$

Question: Can Bob build a model of his local statistics which is consistent with Alice's observed inputs/outputs?

Answer: If and only if there are ρ^{xa} as above with $\sum_{a} P(a|x)\rho^{xa} = \rho$ (independent of x)

Other formulations (NCPV continued)

Question: Can Bob build a model of his local statistics which is consistent with Alice's observed inputs/outputs?

Answer: If and only if there are ρ^{xa} as above with $\sum_{a} P(a|x)\rho^{xa} = \rho$ (independent of x)

Fact: This happens if and only if $\{P(a, b|x, y)\}$ belongs to C_{qs}

General state: a linear functional $f : \mathcal{B} \to \mathbb{C}$ such that f(I) = 1and $f(A) \ge 0$ if A is positive

If ρ density matrix, then $f(A) = tr(A\rho)$ is general state

Not every general state comes from a density matrix

What if Bob uses general states instead of density matrices?

Other formulations (NCPV continued)

Condition (*): Bob can build a model of his local statistics which is consistent with Alice's observed inputs/outputs

If Bob uses density matrices, then (*) holds if and only if $\{P(a, b|x, y)\}$ belongs to C_{qs}

If Bob uses general states, then (*) holds if and only if $\{P(a, b|x, y)\}$ belongs to C_{qc}

Conclusion:

Since $C_{qs} \neq C_{qc}$, modeling power of general states is greater than modeling power of density matrices, even for Bell scenarios

Other formulations (Ozawa)

Correlations with limited interactions:

$$C_{qc}(\epsilon) = \left\{ \{ P(a, b|x, y) \} : P(a, b|x, y) = \langle \psi | M_a^x \circ N_b^y | \psi \rangle \\ \left\| M_a^x N_b^y - N_b^y M_a^x \right\| \le \epsilon \\ |\psi\rangle \in \text{finite-diml } \mathcal{H} \right\}$$

These correlations are non-signalling

Theorem (Ozawa,Coudron-Vidick)

 $C_{qc} = \bigcap_{\epsilon > 0} C_{qc}(\epsilon)$

If $\{P(a, b|x, y)\}$ has finite-dimensional limited interaction models for every $\epsilon > 0$, does it belong to C_q or C_{qa} ? (Answer: no)

Other fundamental questions

- **1** Given a non-local game, can we compute the optimal value ω_t over strategies in C_t , $t \in \{qa, qc\}$?
- 2 Is $C_a = C_{aa}$? (In other words, does every non-local game have an optimal finite-dimensional strategy?)

3 Given $P \in C_q$, is there a computable upper bound on the dimension needed to realize P?

What do we know?

Theorem (Navascués, Pironio, Acín)

Given a non-local game, there is a hierarchy of SDPs which converge in value to ω_{qc}

Problem: no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if $\omega_{qc} < 1$

General cases of other questions completely open!

Two theorems

Theorem (S)

 $C_{qs} \neq C_{qc}$

Theorem (S)

It is undecidable to tell if $\omega_{qc} < 1$

Proofs: make connection to group theory via linear system games

Linear system games

Start with $m \times n$ linear system Ax = b over \mathbb{Z}_2

Inputs:

- Alice receives $1 \le i \le m$ (an equation)
- Bob receives $1 \le j \le n$ (a variable)

Outputs:

- Alice outputs an assignment a_k for all variables x_k with $A_{ik} \neq 0$
- Bob outputs an assignment b_j for x_j

They win if:

- $A_{ij} = 0$ (assignment irrelevant) or
- $A_{ij} \neq 0$ and $a_j = b_j$ (assignment consistent)

Quantum solutions of Ax = b

Observables X_j such that

$$X_j^2 = I \text{ for all } j$$

(

$$\bigcirc \prod_{j=1}^n X_j^{A_{ij}} = (-I)^{b_i} \text{ for all } i$$

$$\textbf{ if } A_{ij}, A_{ik} \neq 0, \text{ then } X_j X_k = X_k X_j$$

(We've written linear equations multiplicatively)

Theorem (Cleve-Mittal, Cleve-Liu-S)

Let G be the game for linear system Ax = b. Then:

- *G* has a perfect strategy in C_{qs} if and only if Ax = b has a finite-dimensional quantum solution
- *G* has a perfect strategy in *C*_{qc} if and only if *A*x = *b* has a quantum solution

Quantum solutions ct'd

The solution group Γ of Ax = b is the group generated by X_1, \ldots, X_n, J such that

1
$$X_j^2 = [X_j, J] = J^2 = e$$
 for all j

$$\mathbf{2} \prod_{j=1}^{n} X_j^{A_{ij}} = J^{b_i} \text{ for all } i$$

$$\textbf{ If } A_{ij}, A_{ik} \neq 0 \text{, then } [X_j, X_k] = e \\$$

where $[a, b] = aba^{-1}b^{-1}$, e = group identity

Theorem (Cleve-Mittal, Cleve-Liu-S)

Let G be the game for linear system Ax = b. Then:

- G has a perfect strategy in C_{qs} if and only if Γ has a finite-dimensional representation with $J \neq I$
- G has a perfect strategy in C_{qc} if and only if $J \neq e$ in Γ

Groups and local compatibility

- Suppose we can write down any group relations we want...
- But: generators in the relation will be forced to commute!
- Call this condition local compatibility
- Local compatibility is (a priori) a very strong constraint
- For instance, S_3 is generated by a, b subject to the relations

$$a^2 = b^2 = e, (ab)^3 = e$$

If ab = ba, then $(ab)^3 = a^3b^3 = ab$

So relations imply a = b, and S_3 becomes \mathbb{Z}_2

Group embedding theorem

Solution groups satisfy local compatibility

Nonetheless:

Theorem (S)

Let G be any finitely-presented group, and suppose we are given J_0 in the center of G such that $J_0^2 = e$.

Then there is an injective homomorphism $\phi : G \hookrightarrow \Gamma$, where Γ is the solution group of a linear system Ax = b, with $\phi(J_0) = J$.

Furthermore, if X_1, \ldots, X_n are some elements of G with $X_i^2 = e$, then we can also require that $\phi(X_i)$ is a generator of Γ .

Non-residually finite groups

Embedding theorem useful because there are groups with interesting properties

For instance, there are finitely-presented non-residually-finite groups:

K with an element $g \neq e$ such that $g \mapsto I$ in every finite-dimensional representation

For example, Higman's group:

$$\mathcal{K}=\langle a,b,c,d:aba^{-1}=b^2,bcb^{-1}=c^2,$$

 $cdc^{-1}=d^2,dad^{-1}=a^2
angle$

Only finite-dimensional representation is the trivial representation!

Strong Tsirelson is false

Start with group K with an element $g \neq e$ such that $g \mapsto I$ in every finite-dimensional representation

Add two generators x and J_0

Add relations $[g, x] = J_0$ and $[J_0, G] = J_0^2 = 1$.

Conclusion: get a group G with a central element $J_0 \neq e$, $J_0^2 = e$, such that $J_0 \mapsto I$ in every finite-dimensional representation

Embedding theorem: embed G in a solution group Γ

$$G \hookrightarrow \Gamma \to \mathcal{U}(n)$$

 $J_0 \mapsto J \mapsto I$

Get a solution group Γ where $J \neq e$, but $J \mapsto I$ in every finite-dimensional representation

Strong Tsirelson is false (continued)

Get a solution group Γ where $J \neq e$, but $J \mapsto I$ in every finite-dimensional representation

Theorem (Cleve-Mittal, Cleve-Liu-S)

Let G be the game for linear system Ax = b. Then:

- G has a perfect strategy in C_{qs} if and only if Γ has a finite-dimensional representation with $J \neq I$
- G has a perfect strategy in C_{qc} if and only if $J \neq e$ in Γ

Game associated to Γ has a perfect strategy in C_{qc}

Does not have a perfect strategy in C_{qs}

Conclusion: $C_{qs} \neq C_{qc}$

How do we prove the embedding theorem?

Linear system Ax = b over \mathbb{Z}_2 equivalent to labelled hypergraph:

Edges are variables

Vertices are equations

v is adjacent to e if and only if $A_{ve} \neq 0$

v is labelled by $b_i \in \mathbb{Z}_2$

Given finitely-presented group G, we get Γ from a linear system

But what linear system?

Can answer this pictorially by writing down a hypergraph?

The hypergraph by example

The end

Thank-you!

Tsirelson's problem and linear system games

William Slofstra