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Non-local games

Referee

Alice Bob

Referee

Win Lose

x y

a b

Win/lose based on outputs a, b
and inputs x , y

Alice and Bob must cooperate
to win

Winning conditions known in
advance

Complication: players cannot
communicate while the game is
in progress
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Strategies for non-local games

Referee

Alice Bob

Referee

Win Lose

x y

a b

Suppose game is played many
times, with inputs drawn from
some public distribution π

To outside observer, Alice and
Bob’s strategy is described by:

P(a, b|x , y) = the probability of
output (a, b) on input (x , y)

Correlation matrix: collection of
numbers {P(a, b|x , y)}
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Classical and quantum strategies

Referee

Alice Bob

Referee

Win Lose

x y

a b

P(a, b|x , y) = the probability of output (a, b) on
input (x , y)

Value of game ω = winning probability using
strategy {P(a, b|x , y)}

What type of strategies might Alice and Bob use?

Classical: can use randomness, flip coin to determine output.

Correlation matrix will be P(a, b|x , y) = A(a|x)B(b|y).

Quantum: Alice and Bob can share entangled quantum state

Bell’s theorem: Alice and Bob can do better with an entangled
quantum state than they can do classically
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Quantum strategies

How do we describe a quantum strategy?

Use axioms of quantum mechanics:

• Physical system described by (finite-dimensional) Hilbert space

• No communication ⇒ Alice and Bob each have their own
(finite dimensional) Hilbert spaces HA and HB

• Hilbert space for composite system is H = HA ⊗HB

• Shared quantum state is a unit vector |ψ〉 ∈ H
• Alice’s output on input x is modelled by measurement

operators {Mx
a }a on HA

• Similarly Bob has measurement operators {Ny
b }b on HB

Quantum correlation: P(a, b|x , y) = 〈ψ|Mx
a ⊗ Ny

b |ψ〉
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Quantum correlations

Set of quantum correlations:

Cq =
{
{P(a, b|x , y)} :P(a, b|x , y) = 〈ψ|Mx

a ⊗ Ny
b |ψ〉 where

|ψ〉 ∈ HA ⊗HB , where HA,HB fin dim’l

Mx
a and Ny

b are projections on HA and HB∑
a

Mx
a = I and

∑
b

Ny
b = I for all x , y

}
Two variants:

1 Cqs : Allow HA and HB to be infinite-dimensional

2 Cqa = Cq: limits of finite-dimensional strategies

Relations: Cq ⊆ Cqs ⊆ Cqa
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Commuting-operator model

Another model for composite systems: commuting-operator model

In this model:

• Alice and Bob each have an algebra of observables A and B
• A and B act on the joint Hilbert space H
• A and B commute: if a ∈ A, b ∈ B, then ab = ba.

This model is used in quantum field theory

Correlation set:

Cqc :=
{
{P(a, b|x , y)} : P(a, b|x , y) = 〈ψ|Mx

aN
y
b |ψ〉 ,

Mx
aN

y
b = Ny

bM
x
a

}
Hierarchy: Cq ⊆ Cqs ⊆ Cqa ⊆ Cqc
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Tsirelson’s problem

Cq ⊆ Cqs ⊆ Cqa ⊆ Cqc

strong

weak

Two models of QM: tensor product and commuting-operator

Tsirelson problems: is Ct , t ∈ {q, qs, qa} equal to Cqc

Fundamental questions:

1 What is the power of these models?

Strong Tsirelson: is Cq = Cqc?

2 Are there observable differences between these two models,
accounting for noise and experimental error?

Weak Tsirelson: is Cqa = Cqc?
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What do we know?

Cq ⊆ Cqs ⊆ Cqa ⊆ Cqc

strong

weak

Theorem (Ozawa, JNPPSW, Fr)

Cqa = Cqc if and only if Connes’ embedding problem is true

Theorem (S)

Cqs 6= Cqc
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Other formulations (NCPV)

Formulation due to Navascués, Cooney, Pérez-Garćıa, Villanueva

Given {P(a, b|x , y)}

Local measurement statistics: P(a|x) =
∑

b,y P(a, b|x , y),

P(b|y) = similar

Rather than modeling joint system, model Bob’s system:

1 For local measurement statistics, find measurements {Ny
b }

and density matrix ρ such that

P(b|y) = tr
(
Ny
b ρ
)

2 For joint statistics, find measurements {Ny
b } and density

matrices ρxa such that

P(a, b|x , y) = P(a|x) tr
(
Ny
b ρ

xa
)
.
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Other formulations (NCPV continued)

1 For local measurement statistics, find measurements {Ny
b }

and density matrix ρ such that

P(b|y) = tr
(
Ny
b ρ
)

2 For joint statistics, find measurements {Ny
b } and density

matrices ρxa such that

P(a, b|x , y) = P(a|x) tr
(
Ny
b ρ

xa
)
.

Question: Can Bob build a model of his local statistics which is
consistent with Alice’s observed inputs/outputs?

Answer: If and only if there are ρxa as above with∑
a P(a|x)ρxa = ρ (independent of x)
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Other formulations (NCPV continued)

Question: Can Bob build a model of his local statistics which is
consistent with Alice’s observed inputs/outputs?

Answer: If and only if there are ρxa as above with∑
a P(a|x)ρxa = ρ (independent of x)

Fact: This happens if and only if {P(a, b|x , y)} belongs to Cqs

General state: a linear functional f : B → C such that f (I ) = 1
and f (A) ≥ 0 if A is positive

If ρ density matrix, then f (A) = tr(Aρ) is general state

Not every general state comes from a density matrix

What if Bob uses general states instead of density matrices?
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Other formulations (NCPV continued)

Condition (*): Bob can build a model of his local statistics which
is consistent with Alice’s observed inputs/outputs

If Bob uses density matrices, then (*) holds if and only if
{P(a, b|x , y)} belongs to Cqs

If Bob uses general states, then (*) holds if and only if
{P(a, b|x , y)} belongs to Cqc

Conclusion:

Since Cqs 6= Cqc , modeling power of general states is greater than
modeling power of density matrices, even for Bell scenarios
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Other formulations (Ozawa)

Correlations with limited interactions:

Cqc(ε) =
{
{P(a, b|x , y)} :P(a, b|x , y) = 〈ψ|Mx

a ◦ N
y
b |ψ〉∥∥Mx

aN
y
b − Ny

bM
x
a

∥∥ ≤ ε
|ψ〉 ∈ finite-diml H

}
These correlations are non-signalling

Theorem (Ozawa,Coudron-Vidick)

Cqc =
⋂
ε>0 Cqc(ε)

If {P(a, b|x , y)} has finite-dimensional limited interaction models
for every ε > 0, does it belong to Cq or Cqa? (Answer: no)
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Other fundamental questions

1 Given a non-local game, can we compute the optimal value ωt

over strategies in Ct , t ∈ {qa, qc}?

2 Is Cq = Cqa? (In other words, does every non-local game have
an optimal finite-dimensional strategy?)

3 Given P ∈ Cq, is there a computable upper bound on the
dimension needed to realize P?
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What do we know?

Theorem (Navascués, Pironio, Aćın)

Given a non-local game, there is a hierarchy of SDPs which
converge in value to ωqc

Problem: no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if ωqc < 1

General cases of other questions completely open!
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Two theorems

Theorem (S)

Cqs 6= Cqc

Theorem (S)

It is undecidable to tell if ωqc < 1

Proofs: make connection to group theory via linear system games
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Linear system games

Start with m × n linear system Ax = b over Z2

Inputs:

• Alice receives 1 ≤ i ≤ m (an equation)

• Bob receives 1 ≤ j ≤ n (a variable)

Outputs:

• Alice outputs an assignment ak for all variables xk with
Aik 6= 0

• Bob outputs an assignment bj for xj

They win if:

• Aij = 0 (assignment irrelevant) or

• Aij 6= 0 and aj = bj (assignment consistent)
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Quantum solutions of Ax = b

Observables Xj such that

1 X 2
j = I for all j

2
∏n

j=1 X
Aij

j = (−I )bi for all i

3 If Aij ,Aik 6= 0, then XjXk = XkXj

(We’ve written linear equations multiplicatively)

Theorem (Cleve-Mittal,Cleve-Liu-S)

Let G be the game for linear system Ax = b. Then:

• G has a perfect strategy in Cqs if and only if Ax = b has a
finite-dimensional quantum solution

• G has a perfect strategy in Cqc if and only if Ax = b has a
quantum solution
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Quantum solutions ct’d

The solution group Γ of Ax = b is the group generated by
X1, . . . ,Xn, J such that

1 X 2
j = [Xj , J] = J2 = e for all j

2
∏n

j=1 X
Aij

j = Jbi for all i

3 If Aij ,Aik 6= 0, then [Xj ,Xk ] = e

where [a, b] = aba−1b−1, e = group identity

Theorem (Cleve-Mittal,Cleve-Liu-S)

Let G be the game for linear system Ax = b. Then:

• G has a perfect strategy in Cqs if and only if Γ has a
finite-dimensional representation with J 6= I

• G has a perfect strategy in Cqc if and only if J 6= e in Γ

Tsirelson’s problem and linear system games William Slofstra



Groups and local compatibility

Suppose we can write down any group relations we want...

But: generators in the relation will be forced to commute!

Call this condition local compatibility

Local compatibility is (a priori) a very strong constraint

For instance, S3 is generated by a, b subject to the relations

a2 = b2 = e, (ab)3 = e

If ab = ba, then (ab)3 = a3b3 = ab

So relations imply a = b, and S3 becomes Z2
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Group embedding theorem

Solution groups satisfy local compatibility

Nonetheless:

Theorem (S)

Let G be any finitely-presented group, and suppose we are given J0
in the center of G such that J20 = e.

Then there is an injective homomorphism φ : G ↪→ Γ, where Γ is
the solution group of a linear system Ax = b, with φ(J0) = J.

Furthermore, if X1, . . . ,Xn are some elements of G with X 2
i = e,

then we can also require that φ(Xi ) is a generator of Γ.
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Non-residually finite groups

Embedding theorem useful because there are groups with
interesting properties

For instance, there are finitely-presented non-residually-finite
groups:

K with an element g 6= e such that g 7→ I in every
finite-dimensional representation

For example, Higman’s group:

K = 〈a, b, c , d :aba−1 = b2, bcb−1 = c2,

cdc−1 = d2, dad−1 = a2〉

Only finite-dimensional representation is the trivial representation!
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Strong Tsirelson is false

Start with group K with an element g 6= e such that g 7→ I in
every finite-dimensional representation

Add two generators x and J0

Add relations [g , x ] = J0 and [J0,G ] = J20 = 1.

Conclusion: get a group G with a central element J0 6= e, J20 = e,
such that J0 7→ I in every finite-dimensional representation

Embedding theorem: embed G in a solution group Γ

G ↪→ Γ→ U(n)

J0 7→ J 7→ I

Get a solution group Γ where J 6= e, but J 7→ I in every
finite-dimensional representation
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Strong Tsirelson is false (continued)

Get a solution group Γ where J 6= e, but J 7→ I in every
finite-dimensional representation

Theorem (Cleve-Mittal,Cleve-Liu-S)

Let G be the game for linear system Ax = b. Then:

• G has a perfect strategy in Cqs if and only if Γ has a
finite-dimensional representation with J 6= I

• G has a perfect strategy in Cqc if and only if J 6= e in Γ

Game associated to Γ has a perfect strategy in Cqc

Does not have a perfect strategy in Cqs

Conclusion: Cqs 6= Cqc
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How do we prove the embedding theorem?

Linear system Ax = b over Z2 equivalent to labelled hypergraph:

Edges are variables

Vertices are equations

v is adjacent to e if and only if Ave 6= 0

v is labelled by bi ∈ Z2

Given finitely-presented group G , we get Γ from a linear system

But what linear system?

Can answer this pictorially by writing down a hypergraph?
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The hypergraph by example

zy uvx

〈x , y , z , u, v : xyxz = xuvu = e = x2 = y2 = · · · = v2〉
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The end

〈x , y , z , u, v : xyxz = xuvu = e = x2 = y2 = · · · = v2〉

Thank-you!
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