Entanglement requirements in non-local games

William Slofstra

IQC, University of Waterloo

August 31, 2017
Non-local games (aka Bell scenarios)

Win/lose based on outputs a, b and inputs x, y

Alice and Bob must cooperate to win

Winning conditions known in advance

Complication: players cannot communicate while the game is in progress
Example: the CHSH game

Referee

Referee

Alice

Bob

\(x \in \{0, 1\} \)

\(y \in \{0, 1\} \)

\(a \in \{0, 1\} \)

\(b \in \{0, 1\} \)

\(a \oplus b = x \land y \)

\(otherwise \)

Win

Lose

Compare with:

\[
A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1
\]
Non-local games more formally

A non-local game consists of:

Finite input sets: $\mathcal{I}_X, \mathcal{I}_Y$

Finite output sets: $\mathcal{O}_X, \mathcal{O}_Y$

A prob. distribution π on $\mathcal{I}_X \times \mathcal{I}_Y$

A function $V : \mathcal{O}_X \times \mathcal{O}_Y \times \mathcal{I}_X \times \mathcal{I}_Y \rightarrow \{0, 1\}$
Non-local games more formally

A non-local game consists of:

Finite input sets: \(\mathcal{I}_X, \mathcal{I}_Y \)

Finite output sets: \(\mathcal{O}_X, \mathcal{O}_Y \)

A prob. distribution \(\pi \) on \(\mathcal{I}_X \times \mathcal{I}_Y \)

A function \(V : \mathcal{O}_X \times \mathcal{O}_Y \times \mathcal{I}_X \times \mathcal{I}_Y \rightarrow \{0, 1\} \)

Interpretation:
If Alice and Bob win on inputs \((x, y)\) and outputs \((a, b)\) then
\(V(a, b|x, y) = 1. \)
Otherwise \(V(a, b|x, y) = 0. \)
Strategies: what can Alice and Bob do?

Deterministic local strategies:

Choose a_x’s and b_y’s ahead of time

Alice outputs a_x on input x

Bob outputs b_y on input y
Strategies: what can Alice and Bob do?

Deterministic local strategies:
Choose a_x’s and b_y’s ahead of time
Alice outputs a_x on input x
Bob outputs b_y on input y

The winning probability for this strategy S is

$$\omega(S) = \sum_{x \in I_A, y \in I_B} \pi(x, y) V(a_x, b_y | x, y).$$

The classical value of the game G is

$$\omega^c(G) = \max \{ \omega(S) : \text{deterministic strategies } S \}. $$
What can the players do?

Quantum strategy:

Alice and Bob share quantum state

\[|\psi\rangle \in H_A \otimes H_B \]

Choose outputs according to PVMs

\{ P_x^a \}, \{ Q_y^b \}

The winning probability for this strategy

\[S = \omega(S) = \sum_{x \in I_A, y \in I_B} \pi(x, y) V(a_x, b_y | x, y) \langle \psi | P_x^a \otimes Q_y^b | \psi \rangle. \]

The quantum value of the game

\[G = \omega_q(G) = \sup \{ \omega(S) : \text{quantum strategies} S \}. \]

Note: no bound on dim \(H_A, H_B \) assumed.
What can the players do?

Quantum strategy:

Alice and Bob share quantum state
\[|\psi\rangle \in H_A \otimes H_B \]

Choose outputs according to PVMs \(\{ P^x_a \} \), \(\{ Q^y_b \} \)

The winning probability for this strategy \(S \) is

\[
\omega(S) = \sum_{x \in I_A, y \in I_B} \pi(x, y) V(a_x, b_y | x, y) \langle \psi | P^x_a \otimes Q^y_b | \psi \rangle.
\]

The quantum value of the game \(G \) is

\[
\omega^q(G) = \sup \{ \omega(S) : \text{quantum strategies } S \}.
\]

Note: no bound on \(\text{dim } H_A, H_B \) assumed

Entanglement requirements in non-local games

William Slofstra
Entanglement requirements

If \(\omega^c(G) < \omega^q(G) \), then

\[G \text{ is a distributed computational task with quantum advantage} \]
Entanglement requirements

If $\omega^c(G) < \omega^q(G)$, then

G is a distributed computational task with quantum advantage

We’d like a resource theory for non-local games

How much “entanglement” is required to achieve $\omega^q(G)$? (the quantum value)

$\omega^q(G) - \epsilon$? (near the quantum value)
Entanglement requirements

If $\omega^c(G) < \omega^q(G)$, then

G is a distributed computational task with quantum advantage

We’d like a resource theory for non-local games

How much “entanglement” is required to achieve

$\omega^q(G)$? (the quantum value)

$\omega^q(G) - \epsilon$? (near the quantum value)

Possible resources: local Hilbert space dimension, von Neumann entropy, “non-locality”
Why do we care about entanglement requirements?

- Test cases for power of entanglement
- Certify presence of entanglement
- Self-test quantum states:
 For some games G, achieving $\omega^q(G)$ or $\omega^q(G) - \epsilon$ can require states or strategies of a certain form.
- Device independent protocols in cryptography
Why do we care about entanglement requirements?

- Test cases for power of entanglement
- Certify presence of entanglement
- Self-test quantum states:
 For some games G, achieving $\omega^q(G)$ or $\omega^q(G) - \epsilon$ can require states or strategies of a certain form.
- Device independent protocols in cryptography

There are other important questions, like:

Can we compute value of $\omega^q(G)$?

(Note: $\omega^c(G)$ is relatively easy to compute)
What do we know about entanglement requirements?

Bounded entanglement is not enough: there are games with $O(n)$
questions requiring dimension $2^\Omega(n)$ to play optimally.
What do we know about entanglement requirements?

Bounded entanglement is not enough: there are games with $O(n)$ questions requiring dimension $2^\Omega(n)$ to play optimally

Is a finite amount of entanglement required for every fixed G?

Conjecture [PV10]: there is a game with three questions and two answers per player for which finite local dimensions are not enough

Finite dimensions are not sufficient for variants of non-local games: [LTW13], [MV13], [RV15]

Theorem (S): there is a non-local game (with several hundred questions per player) for which finite local dimensions does not suffice to achieve $\omega_q(G)$
What do we know about entanglement requirements?

Bounded entanglement is not enough: there are games with $O(n)$ questions requiring dimension $2^\Omega(n)$ to play optimally.

Is a finite amount of entanglement required for every fixed G?

Conjecture [PV10]: there is a game with three questions and two answers per player for which finite local dimensions are not enough.

Finite dimensions are not sufficient for variants of non-local games: [LTW13], [MV13], [RV15]
What do we know about entanglement requirements?

Bounded entanglement is not enough: there are games with $O(n)$ questions requiring dimension $2^{\Omega(n)}$ to play optimally.

Is a finite amount of entanglement required for every fixed G?

Conjecture [PV10]: there is a game with three questions and two answers per player for which finite local dimensions are not enough.

Finite dimensions are not sufficient for variants of non-local games: [LTW13], [MV13], [RV15].

Theorem (S): there is a non-local game (with several hundred questions per player) for which finite local dimensions does not suffice to achieve $\omega^q(G)$.
New tool: connection to group theory

Linear system game:

Start with $m \times n$ linear system $Ax = b$ over \mathbb{Z}_2

Inputs: Alice receives $1 \leq i \leq m$ (equation)
Bob receives $1 \leq j \leq n$ (variable)

Outputs: Alice: assignment to variables x_k with $A_{ik} \neq 0$
Bob: assignment to variable x_j

Win if Alice's assignment satisfies equation i, and
either $A_{ij} = 0$ or Alice's assignment agrees with Bob's
New tool: connection to group theory

Linear system game:

Start with $m \times n$ linear system $Ax = b$ over \mathbb{Z}_2

Inputs: Alice receives $1 \leq i \leq m$ (equation)
Bob receives $1 \leq j \leq n$ (variable)

Outputs: Alice: assignment to variables x_k with $A_{ik} \neq 0$
Bob: assignment to variable x_j

Win if Alice’s assignment satisfies equation i, and
either $A_{ij} = 0$ or Alice’s assignment agrees with Bob’s

Classically: can play perfectly iff $Ax = b$ has a solution

(Play perfectly = win with probability 1)
Quantum solutions of $Ax = b$

Theorem (Cleve-Mittal, Cleve-Liu-S): Can play linear system game perfectly with a quantum strategy iff:

there are observables X_j such that

1. $X_j^2 = I$ for all j
2. $\prod_{j=1}^{n} X_j^{A_{ij}} = (-I)^{b_i}$ for all i
3. If $A_{ij}, A_{ik} \neq 0$, then $X_j X_k = X_k X_j$

(We’ve written linear equations multiplicatively)
Quantum solutions of $Ax = b$

Theorem (Cleve-Mittal, Cleve-Liu-S): Can play linear system game perfectly with a quantum strategy iff:

there are observables X_j such that

1. $X_j^2 = I$ for all j
2. $\prod_{j=1}^n X_j^{A_{ij}} = (-I)^{b_i}$ for all i
3. If $A_{ij}, A_{ik} \neq 0$, then $X_j X_k = X_k X_j$

(We’ve written linear equations multiplicatively)

If this happens, say that $Ax = b$ has a quantum solution

(Warning: there are some big footnotes here)
Connection with group theory

The solution group \(\Gamma \) of \(Ax = b \) is the group generated by \(X_1, \ldots, X_n, J \) such that

1. \(X_j^2 = [X_j, J] = J^2 = e \) for all \(j \)
2. \(\prod_{j=1}^{n} X_j^{A_{ij}} = J^{b_i} \) for all \(i \)
3. If \(A_{ij}, A_{ik} \neq 0 \), then \([X_j, X_k] = e \)

where \([a, b] = aba^{-1}b^{-1}\), \(e \) = group identity

Theorem (Cleve-Mittal)

Let \(G \) be the game for linear system \(Ax = b \). Then \(G \) has a perfect (tensor-product) strategy if and only if \(J \) is non-trivial in some finite-dimensional representation of the solution group \(\Gamma \).
What groups can be solution groups?

There are non-residually finite groups, i.e. groups with elements which are non-trivial but trivial in all finite-dimensional representations

Example (A non-residually finite group)

\[K = \langle x, y, a, b : xyx^{-1} = y, yay^{-1} = b, yby^{-1} = a \rangle. \]

\(ab^{-1} \) is trivial in finite-dimensional representations, but non-trivial in approximate representations
What groups can be solution groups?

There are non-residually finite groups, i.e. groups with elements which are non-trivial but trivial in all finite-dimensional representations

Example (A non-residually finite group)

$$K = \langle x, y, a, b : xy^{-1} = y, y^{-1} = b, yby^{-1} = a \rangle.$$

ab^{-1} is trivial in finite-dimensional representations, but non-trivial in approximate representations

Solution groups don’t look very complicated, but:

Theorem (S)

Every finitely-presented group embeds in a solution group.
Other consequences of embedding theorem

- Undecidable to determine if $\omega^q(G) < 1$

Tobias Fritz: quantum logic is undecidable

Tsirelson’s problem: there are commuting-operator correlations which are not tensor-product correlations

Big open question: Can we separate commuting-operator correlations from tensor-product correlations with a Bell inequality?

Self-testing: we can self-test any group

In progress (with Li Liu): self-test any finite group robustly

The end!
Other consequences of embedding theorem

- Undecidable to determine if $\omega^q(G) < 1$
- Tobias Fritz: quantum logic is undecidable
Other consequences of embedding theorem

- Undecidable to determine if $\omega^q(G) < 1$
- Tobias Fritz: quantum logic is undecidable
- Tsirelson’s problem: there are commuting-operator correlations which are not tensor-product correlations

Big open question: Can we separate commuting-operator correlations from tensor-product correlations with a Bell inequality?

Self-testing: we can self-test any group

In progress (with Li Liu): self-test any finite group robustly

The end!
Other consequences of embedding theorem

- Undecidable to determine if $\omega^q(G) < 1$
- Tobias Fritz: quantum logic is undecidable
- Tsirelson’s problem: there are commuting-operator correlations which are not tensor-product correlations
- Big open question: Can we separate commuting-operator correlations from tensor-product correlations with a Bell inequality?
Other consequences of embedding theorem

- Undecidable to determine if $\omega^q(G) < 1$
- Tobias Fritz: quantum logic is undecidable
- Tsirelson’s problem: there are commuting-operator correlations which are not tensor-product correlations
- Big open question: Can we separate commuting-operator correlations from tensor-product correlations with a Bell inequality?
- Self-testing: we can self-test any group
- In progress (with Li Liu): self-test any finite group robustly
Other consequences of embedding theorem

- Undecidable to determine if $\omega^q(G) < 1$
- Tobias Fritz: quantum logic is undecidable
- Tsirelson’s problem: there are commuting-operator correlations which are not tensor-product correlations
- Big open question: Can we separate commuting-operator correlations from tensor-product correlations with a Bell inequality?
- Self-testing: we can self-test any group
- In progress (with Li Liu): self-test any finite group robustly

The end!