Tsirelson's problem and linear system games

William Slofstra

IQC, University of Waterloo

January 20th, 2017

includes joint work with Richard Cleve and Li Liu

Conventional wisdom: Finite time / volume / energy / etc. \implies can always describe nature by finite-dimensional Hilbert spaces

Conventional wisdom: Finite time / volume / energy / etc. \implies can always describe nature by finite-dimensional Hilbert spaces

But... many models in quantum mechanics and quantum field theory require infinite-dimensional Hilbert spaces (e.g. CCR)

Could nature be "intrinsically" infinite-dimensional?

Conventional wisdom: Finite time / volume / energy / etc. \implies can always describe nature by finite-dimensional Hilbert spaces

But... many models in quantum mechanics and quantum field theory require infinite-dimensional Hilbert spaces (e.g. CCR)

Could nature be "intrinsically" infinite-dimensional?

Answer: Probably not

Conventional wisdom: Finite time / volume / energy / etc. \implies can always describe nature by finite-dimensional Hilbert spaces

But... many models in quantum mechanics and quantum field theory require infinite-dimensional Hilbert spaces (e.g. CCR)

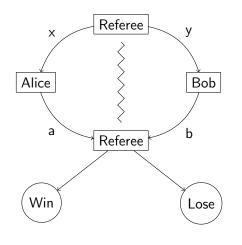
Could nature be "intrinsically" infinite-dimensional?

Answer: Probably not

But if it was... could we recognize that fact in an experiment?

(For instance, in a Bell-type experiment?)

Non-local games (aka Bell-type experiments)



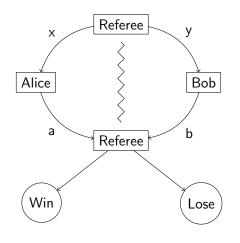
Win/lose based on outputs a, b and inputs x, y

Alice and Bob must cooperate to win

Winning conditions known in advance

Complication: players cannot communicate while the game is in progress

Non-local games ct'd

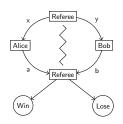


Suppose game is played many times, with inputs drawn from some public distribution π

To outside observer, Alice and Bob's strategy is described by:

P(a, b|x, y) = the probability of output (a, b) on input (x, y)

Correlation matrix: collection of numbers $\{P(a, b|x, y)\}$



P(a, b|x, y) = the probability of output (a, b) on input (x, y)

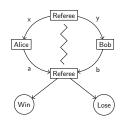
n questions, *m* answers: $\{P(a,b|x,y)\} \subset \mathbb{R}^{m^2n^2}$

Classically

$$P(a,b|x,y) = p_a^x \cdot q_b^y$$

Probability that Alice outputs a on input x

Same for Bob



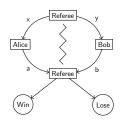
$$P(a, b|x, y)$$
 = the probability of output (a, b) on input (x, y)

n questions, *m* answers: $\{P(a,b|x,y)\} \subset \mathbb{R}^{m^2n^2}$

Classically

$$P(a,b|x,y) = \sum_{i} \lambda_{i} \cdot p_{a}^{xi} \cdot q_{b}^{yi}$$
 Shared randomness Probability that Alice outputs a on input x

Same for Bob

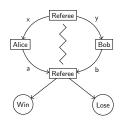


P(a, b|x, y) = the probability of output (a, b) on input (x, y)

n questions, *m* answers: $\{P(a,b|x,y)\} \subset \mathbb{R}^{m^2n^2}$

Quantum

$$P(a,b|x,y) = \langle \psi | M_a^x \otimes N_b^y | \psi \rangle$$
 Alice's measurement on input x $formula = 0$ Bob's measurement on input y shared state on $H_1 \otimes H_2$



P(a, b|x, y) = the probability of output (a, b) on input (x, y)

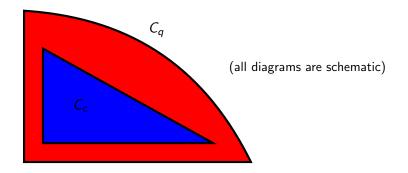
n questions, *m* answers: $\{P(a,b|x,y)\} \subset \mathbb{R}^{m^2n^2}$

Quantum

$$P(a,b|x,y) = \langle \psi | M_a^x \otimes N_b^y | \psi \rangle$$

tensor product
Why? axiom of quantum mechanics for composite systems

Bell inequalities

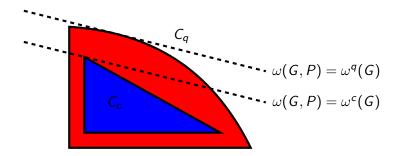


 $C_c(m, n) = \text{set of classical correlation matrices}$

 $C_a(m, n) = \text{set of quantum correlation matrices}$

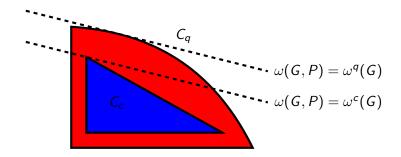
Both are convex subsets of $\mathbb{R}^{m^2n^2}$.

Bell inequalities ct'd



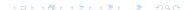
 $\omega(G,P)=$ probability of winning game G with correlation P $\omega^c(G)=$ maximum winning probability for $P\in C_c(m,n)$ $\omega^q(G)=$ same thing but with $C_q(m,n)$

Bell inequalities ct'd

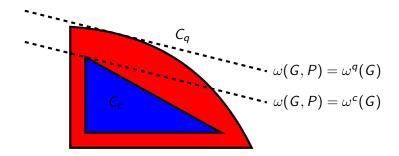


If
$$\omega^c(G) < \omega^q(G)$$
, then

- (1) $C_c \subsetneq C_q$, and
- (2) we can (theoretically) show this in an experiment



Bell inequalities ct'd



If
$$\omega^c(G) < \omega^q(G)$$
, then

- (1) $C_c \subsetneq C_q$, and
- (2) we can (theoretically) show this in an experiment

Bell's theorem + many experiments: this happens!

Finite versus infinite-dimensional

Quantum correlations:

$$P(a,b|x,y) = \langle \psi | M_a^x \otimes N_b^y | \psi \rangle$$

where $|\psi\rangle \in H_1 \otimes H_2$

Finite versus infinite-dimensional

Quantum correlations:

$$P(a, b|x, y) = \langle \psi | M_a^x \otimes N_b^y | \psi \rangle$$

where $|\psi\rangle\in H_1\otimes H_2$

Correlation set C_q :

 H_1 , H_2 must be finite-dimensional (but, no bound on dimension)

Finite versus infinite-dimensional

Quantum correlations:

$$P(a,b|x,y) = \langle \psi | M_a^x \otimes N_b^y | \psi \rangle$$

where $|\psi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2$

Correlation set C_q :

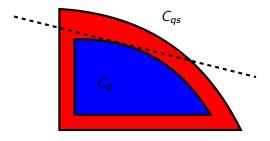
 H_1 , H_2 must be finite-dimensional (but, no bound on dimension)

Correlation set C_{qs} :

 H_1 , H_2 allowed to be infinite-dimensional (the 's' stands for 'spatial tensor product')

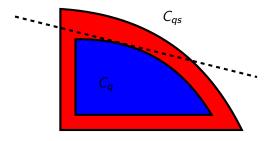
Finite versus infinite-dimensional ct'd

Can we separate C_q from C_{qs} with a Bell inequality?



Finite versus infinite-dimensional ct'd

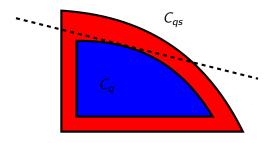
Can we separate C_q from C_{qs} with a Bell inequality?



NO!

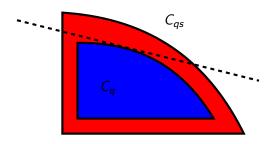
This is the wrong picture

How is this picture wrong?



 C_q and C_{qs} are not known to be closed.

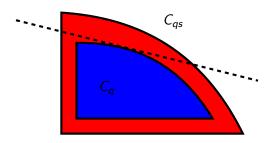
How is this picture wrong?



 C_q and C_{qs} are not known to be closed.

Even worse: $\overline{C_{qs}} = \overline{C_q}$

How is this picture wrong?



 C_q and C_{qs} are not known to be closed.

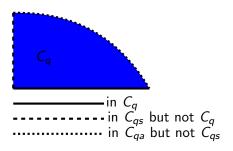
Even worse: $\overline{C_{qs}} = \overline{C_q}$

New correlation set $C_{qa} := \overline{C_q}$

contains limits of finite-dimensional correlations indistinguishable from C_q and C_{qs} in experiment

The real picture

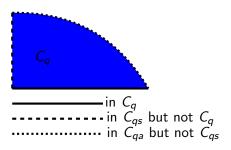
Could look like:



We know $C_q \subseteq C_{qs} \subseteq C_{qa}$... but nothing else!

The real picture

Could look like:



We know $C_q \subseteq C_{qs} \subseteq C_{qa}$... but nothing else!

Fortunately, this is not the end of the story

We've assumed that $\mathcal{H}=\mathcal{H}_A\otimes\mathcal{H}_B...$ maybe this is too restrictive

Commuting-operator model

Another model of composite systems

Correlation set C_{qc} :

$$P(a, b|x, y) = \langle \psi | M_a^x \cdot N_b^y | \psi \rangle$$

where

- (1) $|\psi\rangle$ belongs to a joint Hilbert space H (possibly infinite-dimensional)
- (2) Measurements commute: $M_a^x N_b^y = N_b^y M_a^x$ for all x, y, a, b

'qc' stands for 'quantum-commuting'

What do we know about C_{qc}

Correlation set C_{qc} : $P(a,b|x,y) = \langle \psi | M_a^x \cdot N_b^y | \psi \rangle$

 C_{ac} is closed!

Get a hierarchy $C_q \subseteq C_{qs} \subseteq C_{qa} \subseteq C_{qc}$ of convex sets

What do we know about C_{qc}

Correlation set C_{qc} : $P(a, b|x, y) = \langle \psi | M_a^x \cdot N_b^y | \psi \rangle$

 C_{ac} is closed!

Get a hierarchy $C_q \subseteq C_{qs} \subseteq C_{qa} \subseteq C_{qc}$ of convex sets

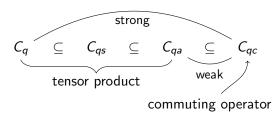
If H is finite-dimensional, then $\{P(a,b|x,y)\} \in C_q$

Can find H_1 , H_2 such that $H = H_1 \otimes H_2$,

$$M_a^{\mathsf{x}} \cong \widetilde{M}_a^{\mathsf{x}} \otimes I$$
 and $N_b^{\mathsf{y}} \cong I \otimes \widetilde{N}_b^{\mathsf{y}}$ for all x,y,a,b

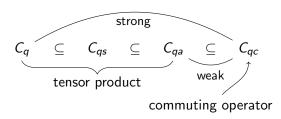
This argument doesn't work if H is infinite-dimensional

Tsirelson's problem(s)



Tsirelson problems: is C_t , $t \in \{q, qs, qa\}$ equal to C_{qc}

Tsirelson's problem(s)



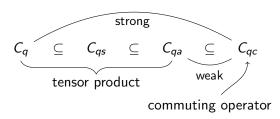
Tsirelson problems: is C_t , $t \in \{q, qs, qa\}$ equal to C_{qc}

These are fundamental questions

Comparing two axiom systems:

Strong Tsirelson: is $C_q = C_{qc}$?

Tsirelson's problem(s)



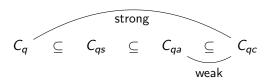
Tsirelson problems: is C_t , $t \in \{q, qs, qa\}$ equal to C_{qc}

These are fundamental questions

- Comparing two axiom systems:
 - Strong Tsirelson: is $C_q = C_{qc}$?
- **2** Is $\omega^q(G) < \omega^{qc}(G)$ for any game?

Equivalent to weak Tsirelson: is $C_{qa} = C_{qc}$?

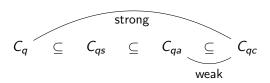
What do we know?



Theorem (Ozawa, JNPPSW, Fr)

 $C_{qa} = C_{qc}$ if and only if Connes' embedding problem is true

What do we know?



Theorem (Ozawa, JNPPSW, Fr)

 $C_{qa} = C_{qc}$ if and only if Connes' embedding problem is true

Theorem (S)

$$C_{qs} \neq C_{qc}$$

Other fundamental questions

• Resource question:

A non-local game G is a computational task

Bell's theorem: can do better with entanglement

Can *G* be played optimally with finite Hilbert space dimension?

Yes
$$\iff$$
 $C_q = C_{qa}$ (in other words, is C_q closed?)

Variants of games: finite dimensions do not suffice [LTW13],[MV14],[RV15]

Other fundamental questions

• Resource question:

A non-local game G is a computational task

Bell's theorem: can do better with entanglement

Can *G* be played optimally with finite Hilbert space dimension?

Yes
$$\iff$$
 $C_q = C_{qa}$ (in other words, is C_q closed?)

Variants of games: finite dimensions do not suffice [LTW13],[MV14],[RV15]

2 Can we compute $\omega^q(G)$ or $\omega^{qc}(G)$?

(what is the power of MIP^* ?)

What do we know?

Question: can we compute $\omega^q(G)$ or $\omega^{qc}(G)$?

Question: can we compute $\omega^q(G)$ or $\omega^{qc}(G)$?

Brute force search through strategies on $\mathcal{H}_A = \mathcal{H}_B = \mathbb{C}^n$, converges to ω^q (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to ω^{qc} (from above)

Question: can we compute $\omega^q(G)$ or $\omega^{qc}(G)$?

Brute force search through strategies on $\mathcal{H}_A = \mathcal{H}_B = \mathbb{C}^n$, converges to ω^q (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to ω^{qc} (from above)

In both cases, no way to tell how close we are to the correct answer

Question: can we compute $\omega^q(G)$ or $\omega^{qc}(G)$?

Brute force search through strategies on $\mathcal{H}_A = \mathcal{H}_B = \mathbb{C}^n$, converges to ω^q (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to ω^{qc} (from above)

In both cases, no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if $\omega^{qc} < 1$

Question: can we compute $\omega^q(G)$ or $\omega^{qc}(G)$?

Brute force search through strategies on $\mathcal{H}_A = \mathcal{H}_B = \mathbb{C}^n$, converges to ω^q (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to ω^{qc} (from above)

In both cases, no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if $\omega^{qc} < 1$

General cases of other questions completely open!

Undecidability

Theorem (S)

It is undecidable to tell if $\omega^{qc} < 1$

Undecidability

Theorem (S)

It is undecidable to tell if $\omega^{qc} < 1$

NPA hierarchy: there is no computable function

 $L: \mathsf{Games} \to \mathbb{N}$

such that $\omega^{qc}(G) = L(G)$ th level of NPA hierarchy

Undecidability

Theorem (S)

It is undecidable to tell if $\omega^{qc} < 1$

NPA hierarchy: there is no computable function

 $L: \mathsf{Games} \to \mathbb{N}$

such that $\omega^{qc}(G) = L(G)$ th level of NPA hierarchy

We still don't know: can we compute $\omega^{qc}(G)$ to within some given error?

(Ji '16: this problem is MIP*-complete)

If weak Tsirelson is true, then ω^{qc} is computable in this stronger sense

Undecidability comes from exact error?

Comparison point: Can decide if optimal value of finite SDP is < 1 (very inefficient algorithm)

Undecidability comes from exact error?

Comparison point: Can decide if optimal value of finite SDP is < 1 (very inefficient algorithm)

More generally: first-order logic for field of real numbers is decidable

Contrast: first-order logic for integers and rationals is undecidable

Undecidability comes from exact error?

Comparison point: Can decide if optimal value of finite SDP is < 1 (very inefficient algorithm)

More generally: first-order logic for field of real numbers is decidable

Contrast: first-order logic for integers and rationals is undecidable

Consequence of undecidability of $\omega^{qc} < 1$ due to Tobias Fritz:

quantum logic (first order theory for projections on Hilbert spaces) is undecidable

Quantum logic is undecidable

Theorem (Tobias Fritz)

The following problem is undecidable:

Given $n \ge 1$ and a collection of subsets C of $\{1, \ldots, n\}$, determine if there are self-adjoint projections P_1, \ldots, P_n such that

$$\sum_{i \in S} P_i = I, \quad P_i P_j = P_j P_i = 0 \text{ if } i \neq j \in S$$

for all $S \in C$.

Proof: follows from undecidability of $\omega^{qc} < 1$

Builds on Acín-Fritz-Leverrier-Sainz '15.

Two theorems

Theorem (S)

 $C_{qs} \neq C_{qc}$

Theorem (S)

It is undecidable to tell if $\omega_{qc} < 1$

Theorems look very different...

Two theorems

Theorem (S)

 $C_{qs} \neq C_{qc}$

Theorem (S)

It is undecidable to tell if $\omega_{ac} < 1$

Theorems look very different...

But: proof follows from a single theorem in group theory

Connection with group theory comes from linear system games

Start with $m \times n$ linear system Ax = b over \mathbb{Z}_2

Start with $m \times n$ linear system Ax = b over \mathbb{Z}_2

Inputs:

- Alice receives $1 \le i \le m$ (an equation)
- Bob receives $1 \le j \le n$ (a variable)

Start with $m \times n$ linear system Ax = b over \mathbb{Z}_2

Inputs:

- Alice receives $1 \le i \le m$ (an equation)
- Bob receives $1 \le j \le n$ (a variable)

Outputs:

- Alice outputs an assignment a_k for all variables x_k with $A_{ik} \neq 0$
- Bob outputs an assignment b_j for x_j

Start with $m \times n$ linear system Ax = b over \mathbb{Z}_2

Inputs:

- Alice receives $1 \le i \le m$ (an equation)
- Bob receives $1 \le j \le n$ (a variable)

Outputs:

- Alice outputs an assignment a_k for all variables x_k with $A_{ik} \neq 0$
- Bob outputs an assignment b_j for x_j

They win if:

- $A_{ij} = 0$ (assignment irrelevant) or
- $A_{ij} \neq 0$ and $a_i = b_i$ (assignment consistent)

Start with $m \times n$ linear system Ax = b over \mathbb{Z}_2

Inputs:

- Alice receives $1 \le i \le m$ (an equation)
- Bob receives $1 \le j \le n$ (a variable)

Outputs:

- Alice outputs an assignment a_k for all variables x_k with $A_{ik} \neq 0$
- Bob outputs an assignment b_j for x_j

They win if:

- $A_{ii} = 0$ (assignment irrelevant) or
- $A_{ij} \neq 0$ and $a_i = b_i$ (assignment consistent)

Such games go back to Mermin-Peres magic square, more recently studied by Cleve-Mittal, Ji, Arkhipov

Quantum solutions of Ax = b

Observables X_i such that

$$X_i^2 = I for all j$$

2
$$\prod_{j=1}^{n} X_{j}^{A_{ij}} = (-I)^{b_{i}}$$
 for all i

(We've written linear equations multiplicatively)

Quantum solutions of Ax = b

Observables X_i such that

- **2** $\prod_{i=1}^{n} X_{i}^{A_{ij}} = (-I)^{b_{i}}$ for all i
- 3 If A_{ij} , $A_{ik} \neq 0$, then $X_i X_k = X_k X_i$

(We've written linear equations multiplicatively)

Theorem (Cleve-Mittal, Cleve-Liu-S)

Let G be the game for linear system Ax = b. Then:

- G has a perfect strategy in C_{qs} if and only if Ax = b has a finite-dimensional quantum solution
- G has a perfect strategy in C_{qc} if and only if Ax = b has a quantum solution

Group theory ct'd

The solution group Γ of Ax = b is the group generated by X_1, \ldots, X_n, J such that

- **1** $X_i^2 = [X_j, J] = J^2 = e$ for all j

where $[a, b] = aba^{-1}b^{-1}$, e = group identity

Theorem (Cleve-Mittal, Cleve-Liu-S)

Let G be the game for linear system Ax = b. Then:

- G has a perfect strategy in C_{qs} if and only if Γ has a finite-dimensional representation with $J \neq I$
- G has a perfect strategy in C_{qc} if and only if $J \neq e$ in Γ

Groups and local compatibility

Suppose we can write down any group relations we want...

But: generators in the relation will be forced to commute!

Groups and local compatibility

Suppose we can write down any group relations we want...

But: generators in the relation will be forced to commute!

Call this condition local compatibility

Local compatibility is (a priori) a very strong constraint

Groups and local compatibility

Suppose we can write down any group relations we want...

But: generators in the relation will be forced to commute!

Call this condition local compatibility

Local compatibility is (a priori) a very strong constraint

For instance, S_3 is generated by a, b subject to the relations

$$a^2 = b^2 = e, (ab)^3 = e$$

If ab = ba, then $(ab)^3 = a^3b^3 = ab$

So relations imply a = b, and S_3 becomes \mathbb{Z}_2

Group embedding theorem

Solution groups satisfy local compatibility

Nonetheless:

Solution groups are as complicated as general groups

Theorem (S)

Let G be any finitely-presented group, and suppose we are given J_0 in the center of G such that $J_0^2 = e$.

Then there is an injective homomorphism $\phi: G \hookrightarrow \Gamma$, where Γ is the solution group of a linear system Ax = b, with $\phi(J_0) = J$.

How do we prove the embedding theorem?

Linear system Ax = b over \mathbb{Z}_2 equivalent to labelled hypergraph:

Edges are variables

Vertices are equations

v is adjacent to e if and only if $A_{ve} \neq 0$

v is labelled by $b_i \in \mathbb{Z}_2$

How do we prove the embedding theorem?

Linear system Ax = b over \mathbb{Z}_2 equivalent to labelled hypergraph:

Edges are variables

Vertices are equations

v is adjacent to e if and only if $A_{ve} \neq 0$

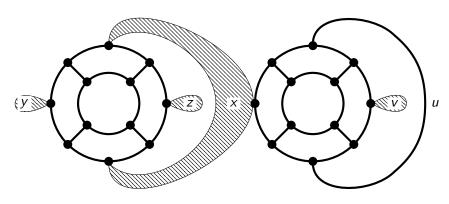
v is labelled by $b_i \in \mathbb{Z}_2$

Given finitely-presented group G, we get Γ from a linear system

But what linear system?

Can answer this pictorially by writing down a hypergraph?

The hypergraph by example



$$\langle x, y, z, u, v : xyxz = xuvu = e = x^2 = y^2 = \dots = v^2 \rangle$$

Further directions

- f 1 Further refinements to address C_q vs C_{qa}
- **2** Is $\omega^q(G) < 1$ decidable?

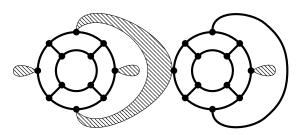
Further directions

- f 1 Further refinements to address C_q vs C_{qa}
- **2** Is $\omega^q(G) < 1$ decidable?
- **3** Embedding theorem: for any f.p. group G, get a non-local game such that Alice and Bob are forced to use G to play perfectly

(Caveat: but might need to use infinite-dimensional commuting-operator strategy to achieve this)

Applications to self-testing / device independent protocols?

The end



$$\langle x, y, z, u, v : xyxz = xuvu = e = x^2 = y^2 = \dots = v^2 \rangle$$

Thank-you!

Extra slide: Higman's group

$$G = \langle a, b, c, d : aba^{-1} = b^2, bcb^{-1} = c^2, cdc^{-1} = d^2, dad^{-1} = a^2$$

Only finite-dimensional representation is the trivial representation

On the other hand, a, b, c, d are all non-trivial in G